

Exact differential equations.

Definition

Given an open rectangle $R=(t_1,t_2)\times (u_1,u_2)\subset \mathbb{R}^2$ and continuously differentiable functions $M, N: R \rightarrow \mathbb{R}$, denoted as $(t, u) \mapsto M(t, u)$ and $(t, u) \mapsto N(t, u)$, the differential equation in the unknown function $y:(t_1,t_2)\rightarrow \mathbb{R}$ given by

 $N(t, y(t)) y'(t) + M(t, y(t)) = 0$

is called *exact* iff for every point $(t, u) \in R$ holds

$$
\partial_t N(t, u) = \partial_u M(t, u)
$$

Recall: we use the notation: $\partial_t \mathcal{N} =$ ∂N ∂t , and $\partial_u M =$ ∂M ∂u .

Exact differential equations.

Example

Show whether the differential equation below is exact,

$$
2ty(t)y'(t) + 2t + y^2(t) = 0.
$$

Solution: We first identify the functions N and M ,

$$
[2ty(t)] y'(t) + [2t + y2(t)] = 0 \Rightarrow \begin{cases} N(t, u) = 2tu, \\ M(t, u) = 2t + u2. \end{cases}
$$

The equation is exact iff $\partial_t N = \partial_u M$. Since

$$
N(t, u) = 2tu \Rightarrow \partial_t N(t, u) = 2u,
$$

$$
M(t, u) = 2t + u^2 \quad \Rightarrow \quad \partial_u M(t, u) = 2u.
$$

We conclude: $\partial_t N(t, u) = \partial_u M(t, u)$. \lhd

Remark: The ODE above is not separable and non-linear.

Exact differential equations.

Example

Show whether the differential equation below is exact,

$$
\sin(t)y'(y) + t^2 e^{y(t)}y'(t) - y'(t) = -y(t)\cos(t) - 2te^{y(t)}.
$$

Solution: We first identify the functions N and M , if we write

$$
[\sin(t) + t^2 e^{y(t)} - 1] y'(t) + [y(t)\cos(t) + 2te^{y(t)}] = 0,
$$

we can see that

$$
N(t, u) = \sin(t) + t^2 e^u - 1 \quad \Rightarrow \quad \partial_t N(t, u) = \cos(t) + 2te^u,
$$

$$
M(t, u) = u \cos(t) + 2te^u \quad \Rightarrow \quad \partial_u M(t, u) = \cos(t) + 2te^u.
$$

The equation is exact, since $\partial_t N(t, u) = \partial_u M(t, u)$. \lhd

Exact differential equations.

Example

Show whether the linear differential equation below is exact,

$$
y'(t) = -a(t)y(t) + b(t), \qquad a(t) \neq 0.
$$

Solution: We first find the functions N and M,

$$
y' + a(t)y - b(t) = 0 \Rightarrow \begin{cases} N(t, u) = 1, \\ M(t, u) = a(t) u - b(t). \end{cases}
$$

The differential equation is not exact, since

 $N(t, u) = 1 \Rightarrow \partial_t N(t, u) = 0,$

$$
M(t, u) = a(t)u - b(t) \Rightarrow \partial_u M(t, u) = a(t).
$$

This implies that $\partial_t N(t, u) \neq \partial_u M(t, u)$. \lhd

Exact equations (Sect. 2.6).

- \blacktriangleright Exact differential equations.
- \blacktriangleright The Poincaré Lemma.
- \blacktriangleright Implicit solutions and the potential function.
- \triangleright Generalization: The integrating factor method.

The Poincaré Lemma.

Remark: The coefficients N and M of an exact equations are the derivatives of a potential function ψ .

Lemma (Poincar´e)

Given an open rectangle $R = (t_1, t_2) \times (u_1, u_2) \subset \mathbb{R}^2$, the continuously differentiable functions $M, N: R \rightarrow \mathbb{R}$ satisfy the equation

$$
\partial_t N(t, u) = \partial_u M(t, u)
$$

iff there exists a twice continuously differentiable function $\psi : R \to \mathbb{R}$, called potential function, such that for all $(t, u) \in R$ holds

 $\partial_u \psi(t, u) = N(t, u), \qquad \partial_t \psi(t, u) = M(t, u).$

Proof: (⇐) Simple: $\partial_t N = \partial_t \partial_u \psi$,
 $\partial_u M = \partial_u \partial_t \psi$, $\Rightarrow \partial_t N = \partial_u M$.

 (\Rightarrow) Difficult: Poincaré, 1880.

The Poincaré Lemma.

Example

Show that the function $\psi(t,u)=t^2+tu^2$ is the potential function for the exact differential equation

$$
2ty(t)y'(t) + 2t + y^2(t) = 0.
$$

Solution: We already saw that the differential equation above is exact, since the functions M and N ,

$$
N(t, u) = 2tu,
$$

\n
$$
M(t, u) = 2t + u^2
$$
 \Rightarrow $\partial_t N = 2u = \partial_u M.$

The potential function is $\psi(t,u)=t^2+tu^2$, since

$$
\partial_t \psi = 2t + u^2 = M, \qquad \partial_u \psi = 2tu = N. \qquad \qquad \triangleleft
$$

Remark: The Poincaré Lemma only states necessary and sufficient conditions on N and M for the existence of ψ .

Implicit solutions and the potential function.

Theorem (Exact differential equations)

Let $M, N: R \to \mathbb{R}$ be continuously differentiable functions on an open rectangle $R=(t_1,t_2)\times (u_1,u_2)\subset \mathbb{R}^2$. If the differential equation

$$
N(t, y(t)) y'(t) + M(t, y(t)) = 0
$$
 (1)

 \Box

is exact, then every solution $y:(t_1,t_2)\rightarrow \mathbb{R}$ must satisfy the algebraic equation

$$
\psi(t,y(t))=c,
$$

where $c \in \mathbb{R}$ and $\psi : R \to \mathbb{R}$ is a potential function for Eq. (1).

Proof:
$$
0 = N(t, y) y' + M(t, y) = \partial_y \psi(t, y) \frac{dy}{dt} + \partial_t \psi(t, y)
$$
).
\n
$$
0 = \frac{d}{dt} \psi(t, y(t)) \iff \psi(t, y(t)) = c.
$$

Implicit solutions and the potential function.

Example

Find all solutions y to the equation

$$
[\sin(t) + t^2 e^{y(t)} - 1] y'(t) + y(t) \cos(t) + 2te^{y(t)} = 0.
$$

Solution: Recall: The equation is exact,

$$
N(t, u) = \sin(t) + t^2 e^u - 1 \quad \Rightarrow \quad \partial_t N(t, u) = \cos(t) + 2t e^u,
$$

$$
M(t, u) = u \cos(t) + 2te^u \Rightarrow \partial_u M(t, u) = \cos(t) + 2te^u,
$$

hence, $\partial_t N = \partial_u M$. Poincaré Lemma says the exists ψ ,

$$
\partial_u \psi(t, u) = N(t, u), \quad \partial_t \psi(t, u) = M(t, u).
$$

These are actually equations for ψ . From the first one,

$$
\psi(t,u)=\int [\sin(t)+t^2e^u-1] du+g(t).
$$

Implicit solutions and the potential function.

Example

Find all solutions y to the equation

$$
[\sin(t) + t^2 e^{y(t)} - 1] y'(t) + y(t) \cos(t) + 2te^{y(t)} = 0.
$$

Solution: $\psi(t,u) = \int [\sin(t) + t^2 e^u - 1] \ du + g(t)$. Integrating, $\psi(t, u) = u \sin(t) + t^2 e^u - u + g(t).$

Introduce this expression into $\partial_t \psi(t, u) = M(t, u)$, that is,

$$
\partial_t \psi(t, u) = u \cos(t) + 2te^u + g'(t) = M(t, u) = u \cos(t) + 2te^u,
$$

Therefore, $g'(t) = 0$, so we choose $g(t) = 0$. We obtain,

$$
\psi(t,u)=u\sin(t)+t^2e^u-u.
$$

So the solution y satisfies $y(t)\sin(t) + t^2 e^{y(t)} - y(t) = c.$ \lhd

Generalization: The integrating factor method.

Theorem (Integrating factor)

Let $M, N: R \to \mathbb{R}$ be continuously differentiable functions on $R = (t_1, t_2) \times (u_1, u_2) \subset \mathbb{R}^2$, with $\mathcal{N} \neq 0$. If the equation

 $N(t, y(t)) y'(t) + M(t, y(t)) = 0$

is not exact, that is, $\partial_t N(t, u) \neq \partial_u M(t, u)$, and if the function

$$
\frac{1}{N(t,u)}\big[\partial_u M(t,u) - \partial_t N(t,u)\big]
$$

does not depend on the variable u, then the equation

$$
\mu(t)[N(t,y(t))y'(t)+M(t,y(t))]=0
$$

is exact, where $\frac{\mu'(t)}{f(t)}$ $\mu(t)$ = 1 $N(t, u)$ $\left[\partial_u M(t,u) - \partial_t N(t,u)\right]$. Generalization: The integrating factor method. Example Find all solutions y to the differential equation $[t^2 + ty(t)]y'(t) + [3ty(t) + y^2(t)] = 0.$ Solution: The equation is not exact: $N(t, u) = t^2 + tu \Rightarrow \partial_t N(t, u) = 2t + u,$ $M(t, u) = 3tu + u^2 \Rightarrow \partial_u M(t, u) = 3t + 2u,$ hence $\partial_t \mathbf{N} \neq \partial_u \mathbf{M}$. We now verify whether the extra condition in Theorem above holds: $\left[\partial_u M(t,u) - \partial_t N(t,u)\right]$ $N(t, u)$ = 1 $(t^2 + tu)$ $[(3t+2u)-(2t+u)]$ $\left[\partial_u M(t,u) - \partial_t N(t,u)\right]$ $N(t, u)$ = 1 $t(t+u)$ $(t + u) =$ 1 t .

Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation

$$
[t2 + ty(t)] y'(t) + [3ty(t) + y2(t)] = 0.
$$

.

Solution:
$$
\frac{\left[\partial_u M(t,u) - \partial_t N(t,u)\right]}{N(t,u)} = \frac{1}{t}
$$

We find a function μ solution of $\frac{\mu'}{2}$ μ = $\left[\partial_u M - \partial_t N\right]$ N , that is

$$
\frac{\mu'(t)}{\mu(t)} = \frac{1}{t} \quad \Rightarrow \quad \ln(\mu(t)) = \ln(t) \quad \Rightarrow \quad \mu(t) = t.
$$

Therefore, the equation below is exact:

$$
\left[t^3 + t^2 y(t)\right] y'(t) + \left[3t^2 y(t) + t y^2(t)\right] = 0.
$$

Generalization: The integrating factor method. Example Find all solutions y to the differential equation $[t^2 + ty(t)]y'(t) + [3ty(t) + y^2(t)] = 0.$ Solution: $[t^3 + t^2 y(t)] y'(t) + [3t^2 y(t) + ty^2(t)] = 0.$ This equation is exact: $\tilde{N}(t, u) = t^3 + t^2 u \Rightarrow \partial_t \tilde{N}(t, u) = 3t^2 + 2tu,$ $\tilde{M}(t, u) = 3t^2u + tu^2 \Rightarrow \partial_u \tilde{M}(t, u) = 3t^2 + 2tu,$ that is, $\partial_t \tilde{N} = \partial_u \tilde{M}$. Therefore, there exists ψ such that $\partial_u \psi(t, u) = \tilde{N}(t, u), \qquad \partial_t \psi(t, u) = \tilde{M}(t, u).$ From the first equation above we obtain $\partial_u \psi = t^3 + t^2 u \quad \Rightarrow \quad \psi(t, u) = \int (t^3 + t^2 u) du + g(t).$

Generalization: The integrating factor method.

Example

Find all solutions y to the differential equation

$$
[t2 + ty(t)] y'(t) + [3ty(t) + y2(t)] = 0.
$$

Solution: $\psi(t,u) = \int (t^3 + t^2 u) du + g(t)$.

Integrating, $\psi(t,u)=t^3u+1$ 1 2 $t^2u^2 + g(t)$. Introduce ψ in $\partial_t \psi = \tilde{M}$, where $\tilde{M} = 3t^2u + tu^2$. So,

$$
\partial_t \psi(t, u) = 3t^2 u + tu^2 + g'(t) = \tilde{M}(t, u) = 3t^2 u + tu^2,
$$

So $g'(t) = 0$ and we choose $g(t) = 0$. We conclude that a potential function is $\psi(t,u)=t^3u+1$ 1 2 $t^2 u^2$. And every solution y satisfies $t^3 y(t) + \frac{1}{2}$ 2 $t^2[y(t)]^2 = c.$ <